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Figure 6. Theoretical predictions for the temperature (black), E-mode (red), and tensor B-mode (blue)
power spectra. Primordial B-mode spectra are shown for two representative values of the tensor-to-scalar
ratio: r = 0.001 and r = 0.05. The contribution to tensor B modes from scattering at recombination peaks
at ` ⇠ 80 and from reionization at ` < 10. Also shown are expected values for the contribution to B
modes from gravitationally lensed E modes (green). Current measurements of the B-mode spectrum are
shown for BICEP2/Keck Array (light orange), POLARBEAR (orange), and SPTPol (dark orange). The
lensing contribution to the B-mode spectrum can be partially removed by measuring the E and exploiting
the non-Gaussian statistics of the lensing.

2.3 Sensitivity forecasts for r

Achieving the CMB-S4 target sensitivity of �(r) ⇠ 10�3 will require exquisite measurements of the B-mode
power spectrum. It is expected that CMB-S4 will target the degree-scale recombination feature rather than
the tens-of-degree-scale reionization feature (see Fig. 6), because these largest scales are di�cult to access
from the ground due to atmosphere and sidelobe pickup (though some Stage-3 ground-based experiments
are attempting this measurement, notably CLASS [24]).

As can be seen from Fig. 6, the first requirement for this level of sensitivity to r is a substantial leap forward
in raw instrument sensitivity. For ground-based bolometric detectors, which are individually limited in
sensitivity by the random arrival of background photons, this means a large increase in detector count. The
forecasts in this section use a baseline of 250,000 detectors operating for four years (or 106 detector years),
dedicated solely to maximizing sensitivity to r. It will be necessary to split this total e↵ort among many
electromagnetic frequencies, to separate the CMB from polarized Galactic foregrounds. The forecasts here
assume eight frequency bands, ranging from 30 to 270 GHz. Contamination from gravitationally lensed E
modes must also be mitigated. While a precise prediction for the cosmological mean of the lensing B-mode
power spectrum can be made and subtracted from the observed spectrum, there will be a sample variance
residual between this prediction and the real lensing B modes on a particular patch of sky. To suppress
this sample variance, it will be necessary to “delens” the B-mode maps with a prediction for the lensing
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The E/B-mode signals that we are after
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Achieving the CMB-S4 target sensitivity of �(r) ⇠ 10�3 will require exquisite measurements of the B-mode
power spectrum. It is expected that CMB-S4 will target the degree-scale recombination feature rather than
the tens-of-degree-scale reionization feature (see Fig. 6), because these largest scales are di�cult to access
from the ground due to atmosphere and sidelobe pickup (though some Stage-3 ground-based experiments
are attempting this measurement, notably CLASS [24]).

As can be seen from Fig. 6, the first requirement for this level of sensitivity to r is a substantial leap forward
in raw instrument sensitivity. For ground-based bolometric detectors, which are individually limited in
sensitivity by the random arrival of background photons, this means a large increase in detector count. The
forecasts in this section use a baseline of 250,000 detectors operating for four years (or 106 detector years),
dedicated solely to maximizing sensitivity to r. It will be necessary to split this total e↵ort among many
electromagnetic frequencies, to separate the CMB from polarized Galactic foregrounds. The forecasts here
assume eight frequency bands, ranging from 30 to 270 GHz. Contamination from gravitationally lensed E
modes must also be mitigated. While a precise prediction for the cosmological mean of the lensing B-mode
power spectrum can be made and subtracted from the observed spectrum, there will be a sample variance
residual between this prediction and the real lensing B modes on a particular patch of sky. To suppress
this sample variance, it will be necessary to “delens” the B-mode maps with a prediction for the lensing
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Average CMB spectral distortions
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Some of the foregrounds that are in the way…

Planck Collaboration: Di↵use component separation: Foreground maps
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Fig. 11. Maximum posterior (top) and posterior rms (bottom) thermal dust intensity maps derived from the joint baseline analysis
of Planck, WMAP, and 408 MHz observations.
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Planck Collaboration: Di↵use component separation: Foreground maps
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Fig. 10. Maximum posterior (top) and posterior rms (bottom) spinning dust intensity maps derived from the joint baseline analysis
of Planck, WMAP, and 408 MHz observations. The top panel shows the sum of the two spinning dust components in the base-
line model, evaluated at 30 GHz, whereas the bottom shows the standard deviation of only the primary spinning dust component,
evaluated at 22.8 GHz.
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Planck Collaboration: Di↵use component separation: Foreground maps

A�

0 10 100 1000

cm�6pc

Fig. 9. Maximum posterior (top) and posterior rms (bottom) free-free emission measure maps derived from the joint baseline analysis
of Planck, WMAP, and 408 MHz observations.

22

Planck Collaboration: Di↵use component separation: Foreground maps
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Fig. 8. Maximum posterior (top) and posterior rms (bottom) synchrotron intensity maps derived from the joint baseline analysis of
Planck, WMAP, and 408 MHz observations.
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Future foreground problem for CMB signals

• B-mode and distortion signals are quite small 
- Low signal to ‘noise’ regime with foregrounds dominating in most bands 

- De-lensing required to reach r ~ 10-3  or nT constraint 
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(e.g., 3 single temperature thermal dust component and AME even more) 
- Intensity and polarization both need to be dealt with 

• Many sensitive channels required to disentangle the 
different components (probably more than we think…) 

• Control of systematics (calibration, beams etc)  

• Need to model all the obvious aspects! 
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Averaging processes in CMB observations
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Averaging processes in CMB observations

JC, Hill and Abitbol, MNRAS, 2017 (ArXiv: 1701.00274)

?

• Beam average (also in frequency…)

?

• Line of sight average (always present!!!)

• Map operations (e.g., spherical harmonic expansion)

y-type distortion appears!

?x Ylm

Averaging processes change the SED!!!

Blackbody SED in 
every volume element



Obvious statements about averaging processes

• SED no longer described by averaged parameters 

• SED shape becomes scale-dependent 

• New morphologies introduced by new SED shapes

hI⌫(p)i 6= I⌫(hpi)

hB⌫(T )i ⇡ B⌫(T0) + T0@T0B⌫(T0)
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Obvious statements about averaging processes

• SED no longer described by averaged parameters 

• SED shape becomes scale-dependent 

• New morphologies introduced by new SED shapes

hI⌫(p)i 6= I⌫(hpi)

How can we capture these effects?

One possibility is (Taylor)-Moment expansions! 
(JC, Hill & Abitbol, 2017, ArXiv: 1701.00274)
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Moment expansions of simple SEDs

JC, Hill and Abitbol, MNRAS, 2017 (ArXiv: 1701.00274)

• Power-law distribution (⟷ synchrotron) 

- Also works as representation for free-free! 
- More general than simple curvature (⟷ gaussian moments)

hI⌫i = A (⌫c/⌫0)↵
⇥
1 + 1

2 � ln2(⌫c/⌫0) +
1
6 � ln
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Moment expansions of simple SEDs

JC, Hill and Abitbol, MNRAS, 2017 (ArXiv: 1701.00274)

• Power-law distribution (⟷ synchrotron) 

- Also works as representation for free-free! 
- More general than simple curvature (⟷ gaussian moments) 

• Modified blackbody distribution (⟷ thermal dust, CIB and 
integrated extra-galactic dust) 
- Longish expressions given in moment paper 
- Second order expansion has six parameters like two 

temperature mBB case but is more general 
- Third order expansion has 10 parameters 

• SZ effect with relativistic correction (JC, Switzer, Nagai & 
Nelson, 2012)  

• Can be easily generalized to polarization case!!!

hI⌫i = A (⌫c/⌫0)↵
⇥
1 + 1

2 � ln2(⌫c/⌫0) +
1
6 � ln
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1
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Application to dust spectra (two-temperature case)

JC, Hill and Abitbol, MNRAS, 2017 (ArXiv: 1701.00274)
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commute, we only have to deal with moments of the form !12...2,
!13...3,!12...23...3,!2...23...3,!2...2 and!3...3. The relevant spectral func-
tions are I1i... j(⌫c, p̄) = Ii... j(⌫c, p̄)/Ā0 with i, j 2 {2, 3} ⌘ {↵, �}, so
that the moments !12...2, !13...3 and !12...23...3 can again be absorbed
by defining !d

i...i j... j = !i...i j... j+!1i...i j... j/Ā0. Assuming narrow bands
and W(�̂, ⌫) = B(�̂)F(⌫), we then find

hI⌫i =
Ā0 (⌫/⌫0)↵̄⌫3

ex � 1

(
1 +

1
2
!d

22 ln2(⌫/⌫0)

+!d
23 ln(⌫/⌫0) Y1(x) +

1
2
!d

33Y2(x)

+
1
6
!d

222 ln3(⌫/⌫0) +
1
2
!d

223 ln2(⌫/⌫0)Y1(x)

+
1
2
!d

233 ln(⌫/⌫0)Y2(x) +
1
6
!d

333Y3(x) + . . .
)

↵̄ =
hA0(r)↵(r)i

Ā0
,

1
T̄
=
hA0(r)/T (r)i

Ā0
(48)

!d
2...23...3 =

D
A0(r)[(↵(r) � ↵̄]k [(T̄/T (r) � 1]m

E

Ā0
.

Higher order terms can be easily added in a similar way. This ex-
pression again captures all the degrees of freedom introduced by the
averaging inside the beam and along the line of sight. Note that the
simple product assuming individual superpositions of power-law
and gray-body spectra would be insu�cient, since the cross-terms
/ lnk(⌫/⌫0) Ym(x), would not have independent coe�cients to take
into account possible correlations between ↵ and T . For example,
the term for k = 1 and m = 1 would be absent.

6.1 Behavior in the Rayleigh-Jeans limit

In the Rayleigh-Jeans limit (h⌫ ⌧ kT ), we can re-express the mod-
ified blackbody spectrum as

IRJ
⌫ (A0,↵,T ) ⇡ A0 (⌫/⌫0)↵+2

"
1 �

x
2
+

x2

12
�

x4

720
+ . . .

#
. (49)

This represents a superposition of power-law spectra, which in
principle can be approximated with Eq. (21). Since x = h⌫/kT ,
the temperature variations of the dust itself enter as a weight-factor
for the power-law moment amplitudes, introducing specific corre-
lations among the moments. The Taylor series of 1/(ex

� 1) fur-
thermore can only be recovered when allowing di↵erences between
power-laws instead of just sums as considered previously. We will
discuss the applicability of this approximation below (Sect. 6.3.1).

6.2 Alternative parameterizations and weighting schemes

In Sect. 5.2.1, we illustrated how the choice of parameters and
weighting a↵ects the moment expansion for gray-body spectra. In
particular, we found that the recovered best-fitting parameters for
truncated moment expansions are sensitive to these choices. In a
similar manner as for the gray-body spectra, by setting ⌫0 = kT/h
and rewriting I⌫(A0,↵,T ) = A0 (⌫/⌫0)↵ ⌫3/(eh⌫/kT

� 1) as

I⌫ = A0

 
kT
h

!3 x3+↵

ex � 1
= B(T,↵)

x̄3+↵
⇣
T̄/T

⌘3+↵

ex̄ T̄/T � 1
(50)

we can derive an alternative moment expansion for the modified
blackbody spectra with new weighting B(T,↵) = A0 (kT/h)3+↵.
However, we find that this approach does not significantly change
the capabilities of the moment expansion to represent di↵erent
SEDs. It only leads to a re-summation of terms up to a given mo-
ment order. We therefore did not consider this approach any further.
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Figure 6. Representation of a two-temperature modified blackbody spec-
trum from Meisner & Finkbeiner (2015) using a varying number of mo-
ments (see text for details). The long-dashed lines show the residuals in
comparison with the estimated absolute sensitivity of PIXIE.

6.3 Two-temperature dust models

To illustrate the application of the moment expansion, let us con-
sider a simple two-temperature dust model, with SED parame-
ters p = {A1, A2,↵1,↵2,T1,T2}. We then have Ā = A1 + A2,
↵̄ = (A1↵1 + A2↵2)/Ā, T̄ = Ā/(A1/T1 + A2/T2) and the moments

!d
2...23...3 =

2X

a=1

Aa

Ā
(↵a � ↵̄)k(T̄/Ta � 1)m. (51)

The general behavior of the moment expansion for di↵erent cases
is similar to that of gray-body spectra, as mentioned above. The
additional parameter, ↵, causes the number of moments per pertur-
bation order to increase strongly. For example, adding all second
order moment terms means 3 extra parameters instead of 1 for the
gray-body spectrum; at third order we need 7 instead of 2 and so
on. The required number of parameters can thus grow quickly for
complicated dust distribution functions.

To illustrate the method, let us consider a concrete example,
setting the model parameters to P1 = {A1, A2,↵1,↵2,T1,T2} =

{A f1, A (1 � f1), 1.63, 2.82, 9.75 K, 15.7 K} with f1 = 0.34188 and
⌫0 = 3 THz, based on recent modeling of CMB data (Meisner
& Finkbeiner 2015). We fix A such that hI⌫i ' 3388 Jy sr�1 at
⌫ = 100 GHz, but for illustrations of the method, the absolute value
does not matter, as the spectral shape is fixed without the amplitude.
We assume 200 frequency bins in log-⌫ of di↵erent ranges and per-
form a simple �2-fit using Eq. (50) setting ⌫0 = kT̄/h. This choice
of the pivot frequency leads to faster convergence. Representing the
resultant spectrum (see Fig. 6) with a single-temperature modified
blackbody in the range 100 GHz . ⌫ . 3 THz yields ↵ = 1.819 and
T = 18.45 K. We find that at low frequencies this approximation
shows a large departure from the true SED, underestimating the
emission by a factor of two (see Fig. 6). Adding the first order mo-
ment corrections, we find ↵ = 1.270, T = 15.27 K, !d

22 = �0.4438,
!d

23 = 0.1695 and !d
33 = 0.2094, which provides an approxima-

tion that is better than ' 0.4% at 300 GHz . ⌫ . 3 THz, departing
only notably at low frequencies, reaching ' 20% at ⌫ ' 100 GHz
(see Fig. 6). This representation uses the same number of parame-
ters (six in total) as the input model, but without assuming a two-
temperature case, and can in principle already capture a broader
range of distributions in temperature and spectral indices.

c� 0000 RAS, MNRAS 000, 000–000

Model from Meisner 
& Finkbeiner, 2015



Application to dust spectra (blind)

JC, Hill and Abitbol, MNRAS, 2017 (ArXiv: 1701.00274)

14 Chluba et al.

The convergence of the moment representation also depends
on the frequency range that is assumed in the fitting process. For a
second order moment representation at 100 GHz . ⌫ . 2 THz, we
obtain ↵ = 1.412, T = 14.84 K, !d

22 = �0.2793, !d
23 = 0.05132

and !d
33 = 0.2191. This representation improves the fit at low fre-

quencies, with the departure decreasing to . 8% at ⌫ ' 100 GHz.
This illustrates that in precision measurements over a wide range
of frequencies, the high frequency part of the dust spectrum can
drive the solution away from the optimal solution at low frequen-
cies. This could a↵ect the ability to recover primordial distortion
signals in high precision CMB spectroscopy, but also is relevant
to the modeling of foregrounds for primordial B-modes. Incorrect
and incomplete (truncated) parameterizations for the foregrounds
can thus yield biased results. Convergence properties of the mo-
ment expansion can again be tested by varying the moment order,
which provides a powerful diagnostic, but is limited by the avail-
able number of channels.

If we now include all moments up to third order (3+3+4=10
parameters), we find ↵ = 2.057, T = 13.33 K, !d

22 = 0.002363,
!d

23 = �0.4189, !d
33 = 0.3789, !d

222 = �0.004326, !d
223 = 0.5326,

!d
233 = �0.2657 and !d

333 = 0.08050 at 100 GHz . ⌫ . 2 THz.
We find that this approximation represents the dust spectrum at
100 GHz . ⌫ . 2 THz to better than ' 0.06% precision (see Fig. 6).
We can see that the higher order moments start decreasing rapidly,
showing that the chosen example is in the perturbative regime and
converges fairly quickly. The achieved level of precision would be
about 4 � 5 times better than the expected sensitivity of PIXIE for
absolute CMB spectroscopy (�I⌫ ' 5 Jy/sr; Kogut et al. 2011).
Again, the parameterization is more general than simply assuming
a two-temperature model, capturing more general distributions of
temperature and spectral indices.

The overall representation of the average spectrum with the
third order moment expansion degrades significantly (by more than
one order of magnitude in terms of absolute precision) when in-
creasing the upper frequency to ⌫ = 3 THz. As expected from our
discussion of gray-body spectra, in this case higher order moments
are required to compensate for the asymptotic behavior of the basis
functions. For a given finite order and distribution of temperatures,
this behavior is inevitable with the moment expansion. In this case,
alternative approaches that directly assume representations of the
temperature distribution functions could be used; however, a pre-
cise description of the underlying probability distribution functions
(with a significant number of parameters) is still required. Simi-
larly, one could use two hierarchies of moment expansions, form-
ing a two-temperature basis to improve the local convergence. We
leave a more detailed discussion of these ideas to future work.

6.3.1 Rayleigh-Jeans approximation

We saw in Sect. 6.1, at low frequencies the superposition of dust
spectra can be thought of as a superposition of power-laws. It turns
out that using a simple power-law expansion to represent the aver-
age dust spectrum for the model discussed above works quite well
at 30 GHz . ⌫ . 500 GHz, when including only N ' 4 moments
(6 parameters in total). A sum of synchrotron and dust spectra, rel-
evant to CMB applications, also works well with N ' 6 moments
(8 parameters in total, which is one less than the input model) at
30 GHz . ⌫ . 200 GHz. However, at higher frequencies correc-
tions related to the Taylor series of 1/(ex

� 1) become too large so
that many power-law moments (N � 6) have to be included for
a su�cient representation of the dust spectrum. In this case, the
general dust moment expansion should be preferred.
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Figure 7. Moment representation of dust models recently discussed by
Kogut & Fixsen (2016). The fits were obtained in the frequency range
100 GHz . ⌫ . 2 THz. The red lines assume a single-temperature dust
model. The violet (double-dotted dashed) lines assume a 10/6 parameter
moment expansion for K1/K2. Notice that the 10 parameter moment ex-
pansion for K1 covers the input model curve even outside the fit domain.

6.4 Distributions of temperatures

To demonstrate the potential of the dust moment representation,
we analyze two more general dust models considered by Kogut &
Fixsen (2016), one assuming a sum of two Gaussians for the dust
temperature (K1), the other using a transient heating model12 (K2).
The resultant SEDs are shown in Fig. 7.

Without knowing the details of the temperature model, we can
represent these spectra using the dust moment expansion, Eq. (50).
Fitting in the range 100 GHz . ⌫ . 2 THz, we find ↵ = 0.9379 and
T = 18.15 K (K1) and ↵ = 1.671 and T = 21.69 K (K2) assum-
ing a single-temperature modified blackbody spectrum. The overall
amplitude, A0, is be determined using I⌫ = 156.61 Jy/sr (K1) and
I⌫ = 220.11 Jy/sr (K2) at ⌫ = 100 GHz. Clearly, this representation
fails to approximate the SED for model K1 but already provides a
good approximation for K2 (see Fig. 7).

A second order moment expansion (6 parameters) signifi-
cantly improves the fit in both cases, leaving residuals at the level
of |�I⌫| . 50 � 200 Jy/sr (K1) and |�I⌫| . 5 Jy/sr (K2) in the con-
sidered frequency range. For K2, the 6 parameter moment expan-
sion is shown in Fig. 7. We find that at 100 GHz . ⌫ . 2 THz,
the transient heating model can be fully represented down to the
PIXIE sensitivity using only 6 parameters without a priori assump-
tions about the temperature model, while outside this range higher
order moments are required. We also find that for both models, a
two-temperature dust model leads to a similar performance, albeit
being less general.

Using a third order moment representation (10 parameters),
we obtain residuals that are more than one order of magnitude
below the sensitivity of PIXIE in both cases. For K1, we have
↵ = 2.327, T = 14.56 K, !d

22 = �0.2983, !d
23 = �0.1718,

!d
33 = �0.1396, !d

222 = 0.03299, !d
223 = 0.5685, !d

233 = �0.07951
and !d

333 = 0.03106 (see Fig. 7). This shows that the dust moment
expansion is able to handle more complicated dust spectra with few
a priori assumptions about the underlying distribution functions.

12 We cordially thank Alan Kogut for providing the average SEDs to us.
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What could the moment expansion method achieve?

• Natural extension of the simple SED shapes 
- The averaging of SEDs is a physical process 

• Factorization of spatial and spectral terms (linear operations!) 
- Moments are new parameters with new morphologies / maps 

• Compression of the information  
- Could even think about orthogonalization schemes to reduce # of pars 

- Allows combining constraints from different methods 

• Useful for simulations of dust and other foregrounds 
- Assessment of possible biases due to foreground residuals 
- Risk assessment (how large could the problem maximally be?)! 

• Propagation of effects across scales 
- Describes frequency de-correlation effects   
- Scale-dependent SED effects and propagation of noise
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We need to check that things are going to work out!


