Galactic HI and the Polarized CMB Foreground

Susan E. Clark | Hubble Fellow, Institute for Advanced Study

J. Colin Hill (IAS), Josh Peek (STScI), Mary Putman (Columbia), The GALFA-HI Collaboration

Do linear HI structures trace the magnetic field?

GALFA-HI: Peek+ in prep

The Rolling Hough Transform Clark, Peek, & Putman 2014, ApJ 789, 82

Malinen+ 2016

Inoue & Inutsuka 2016

Asensio Ramos+ 2017

Measure intensity as a function of angle.

Clark, Peek, & Putman 2014

Linear features in HI correlate with starlight polarization.

Starlight polarization: Heiles 2000

Clark, Peek, & Putman 2014

The correlation is tighter with high-resolution HI.

Clark, Peek, & Putman 2014

Calculate Stokes parameters from the HI orientation.

$$Q_{RHT} = \int \cos(2\theta) \cdot R(\theta) \ d\theta$$
$$U_{RHT} = \int \sin(2\theta) \cdot R(\theta) \ d\theta$$

 $R\left(\theta, x, y\right)$

Clark+ 2015, PRL

Calculate HI and Planck magnetic field orientation.

Neutral hydrogen orientation

$$\theta_{RHT} = \frac{1}{2} \arctan \frac{U_{RHT}}{Q_{RHT}}$$

Planck magnetic field orientation

$$\theta_{353} = \psi_{353} + 90^{\circ}$$

Clark+ 2015, PRL

Characterize the orientation of high-latitude GALFA-HI structures.

-3 km/s 0 km/s +3 km/s

Clark+ 2015, PRL

Characterize the orientation of high-latitude GALFA-HI structures.

High-latitude GALFA-HI structures are aligned with the Planck magnetic field orientation.

 50°

70° Galactic Latitude

Starlight polarization: Heiles 2000

Clark, Hill+ 2015, PRL

We detect strong cross-correlations between RHT, 353 GHz, and starlight polarization angles.

EE/BB asymmetry: Planck Intermediate Results XXX, XXXVIII

Clark, Hill+ 2015, PRL

We use HI data to better constrain the plane-of-sky magnetic field orientation.

Planck likelihood

RHT HI prior

Posterior

 $\mathbf{p_0}$

With Hill, Peek, Montier

Clark+, in prep

What can we learn about the magnetized ISM from the velocity structure of HI linearity?

V₁

V2

V3

V4

fourth dimension: velocity

Can we learn about the LOS magnetic field?

Polarized dust emission region

Can we learn about the LOS magnetic field?

HI velocity channel

Can we learn about the LOS magnetic field?

The dispersion of HI orientation traces LOS depolarization.

Planck 353 GHz polarization fraction

The dispersion of HI orientation traces LOS depolarization.

Polarization fraction

HI coherence

Clark 2017, in prep

The dispersion of HI orientation traces LOS depolarization.

higher fractional polarization

lower fractional polarization

Propriestories

Hige R

Neutral hydrogen in the diffuse ISM is aligned with the interstellar magnetic field.

Clark+ 2014, ApJ

Clark+ 2015, PRL

We are using HI orientation to produce higher-fidelity maps of the plane-of-sky magnetic field. Clark, Hill+, in prep

The velocity structure of HI morphology probes line-of-sight magnetic field tangling. Clark 2017, in prep

> DR2 of GALFA-HI will soon be public! Peek+ 2017, accepted