# Constraining polarized dust spectral energy distribution using multifrequency approach



Tuhin Ghosh On behalf of the Planck Collaboration CMB Foregrounds Workshop November 29, 2017





- > Template-fitting analysis (*Planck intermediate results. XXII 2015*)
- Multicomponent fit in the harmonic space.
- Microwave dust SED for polarization and total intensity.
- Spectral decorrelation of dust B-modes.



#### Polarized dust spectral indices at intermediate latitude sky



Only red sky region is considered

The cross-correlation coefficients at and above 100 GHz can be decomposed as

$$[\alpha_{\nu}^{\mathrm{P}}]_{353}^{1\mathrm{T}} = \alpha^{P}(c_{353}) + \alpha_{\nu}^{\mathrm{P}}(d_{353})$$

We work with the colour ratio between two frequencies  $\nu_1$  and  $\nu_2$  ( $\nu_0$  is used as a reference to get rid of the CMB contribution)

$$R_{\nu_0}^{\mathrm{P}}(\nu_2,\nu_1) = \frac{[\alpha_{\nu_2}^{\mathrm{P}}]_{353}^{1T} - [\alpha_{\nu_0}^{\mathrm{P}}]_{353}^{1T}}{[\alpha_{\nu_1}^{\mathrm{P}}]_{353}^{1T} - [\alpha_{\nu_0}^{\mathrm{P}}]_{353}^{1T}}$$
$$= \frac{\alpha_{\nu_2}^{\mathrm{P}}(d_{353}) - \alpha_{\nu_0}^{\mathrm{P}}(d_{353})}{\alpha_{\nu_1}^{\mathrm{P}}(d_{353}) - \alpha_{\nu_0}^{\mathrm{P}}(d_{353})}$$
$$= f(\beta_{\mathrm{d}}, T_{\mathrm{d}})$$

To characterize the polarized dust SED, we crosscorrelate 353 GHz Q and U maps with the three lowest *Planck* HFI frequency channels (100 - 217GHz) + LFI (30 - 70 GHz) + *WMAP* (23 - 94 GHz) in the pixel space.

$$\langle \beta_{\rm d,mm}^{\rm P} \rangle = 1.59 \pm 0.17, \ T_{\rm d} = 19.6 \ {\rm K}$$



Planck intermediate results. XXII 2015



### **Polarized foregrounds SED**

The cross-correlation coefficients are fitted with a simple two-component foreground model (dust + 353 GHz correlated synchrotron):



Issues:

Planck intermediate results. XXII 2015

- The template polarization maps at 353 GHz have low signal-to-noise ratio at high Galactic latitudes.
- Such correlation analysis picks up only 353-GHz correlated signal. The measured dust SED could be biased due to the spectral decorrelation.



Divide the sky into six large sky regions (f<sub>sky</sub>= 0.24, 0.33, 0.42, 0.52, 0.62 and 0.71).

- > Compute auto- and cross-power spectra over all the sky regions using Xpol.
- CMB is removed from power spectra using the latest Planck best-fit model. CMB variance is included in the error-bars.
- Fit all the spectra simultaneously with five-parameter foreground model as a function of sky regions and multipoles.





Planck intermediate results. XXX 2016



To characterize the SED of polarized foregrounds, we combine the four lowest *Planck* HFI frequency channels (100 – 353 GHz) + LFI (30 GHz) + *WMAP* (23 and 33 GHz).

Amplitude of cross-spectra between frequencies  $\,\nu_1$  and  $\,\nu_2\,$  :

$$\begin{split} \mathcal{D}_{\ell}(\nu_{1} \times \nu_{2}) = & A_{\rm s} \left(\frac{\nu_{1}\nu_{2}}{28.4^{2}}\right)^{\beta_{\rm s}} + A_{\rm d} \left(\frac{\nu_{1}\nu_{2}}{353^{2}}\right)^{\beta_{\rm d}-2} \frac{B_{\nu_{1}}(T_{\rm d})}{B_{353}(T_{\rm d})} \frac{B_{\nu_{2}}(T_{\rm d})}{B_{353}(T_{\rm d})} \\ & + \rho \sqrt{A_{\rm s}}A_{\rm d} \left[ \left(\frac{\nu_{1}}{28.4}\right)^{\beta_{\rm s}} \left(\frac{\nu_{2}}{353}\right)^{\beta_{\rm d}-2} \frac{B_{\nu_{2}}(T_{\rm d})}{B_{353}(T_{\rm d})} \\ & + \left(\frac{\nu_{2}}{28.4}\right)^{\beta_{\rm s}} \left(\frac{\nu_{1}}{353}\right)^{\beta_{\rm d}-2} \frac{B_{\nu_{1}}(T_{\rm d})}{B_{353}(T_{\rm d})} \right] \qquad T_{\rm d} = 19.6 \, {\rm K} \end{split}$$

This model does not include spectral decorrelation.

Five model parameters:

- $\succ$  The synchrotron and dust amplitudes  $A_{
  m s}$  and  $A_{
  m d}$  .
- $\succ$  The two spectral indices  $\beta_{\rm s}$  and  $\beta_{\rm d}$  .
- $\succ$  The dust/synchrotron polarization correlation parameter ho .

#### Choi and Page, astro-ph/1509.05934



- > Auto- and cross-spectra of seven frequencies provide 28 data points.
- > Error-bars on data points are derived from E2E simulations.
- CMB is removed from power spectra using the latest Planck best-fit model. CMB variance is included in the error-bars.
- > Fit is done in two steps:
  - first step no prior.
  - second step, a prior, inferred from the results of the first fit, is introduced on the synchrotron spectral index (  $eta_{
    m s}=-3.13\pm0.07$  ).
- Same method repeated on the data, simulations are used to propagate the error-bars and check for a potential bias on foreground parameters.





#### Dust and synchrotron amplitudes



BB  $A_s/A_d$  ratio is maximum at low multipoles and for the smallest sky region (LR24)

# B

#### Spectral parameters



- $\succ$  Only ho depends systematically on  $\ell$  .
- $\blacktriangleright$  No systematic variations of  $\beta_{\rm d}$  with sky region, except for the lowest  $\ell$  bin.



- The frequency at which dust and synchrotron B-modes power are equal depends on multipole and sky region.
- Dust quickly dominates synchrotron at higher frequencies.



- For this comparison, we only use 217 and 353 GHz maps, which are dust dominated (+ CIB for total intensity).
- Spectral indices for polarization and total intensity are derived from the 217x353 correlation. We compute

$$\alpha_{\ell}^{XX}(217,353) = \frac{C_{\ell}^{XX}(217 \times 353)}{C_{\ell}^{XX}(353 \times 353)}$$

for XX = TT, EE and BB

The same data analysis is repeated on simulated skies (300 realizations) to check for systematics and compute error-bars.





- The mean spectral index for dust polarization is β(P) = 1.56 ± 0.01 (for T<sub>d</sub>=19.6K), a value slightly smaller than that (1.59) reported in PIP XXII.
  - We find a small difference between spectra indices for polarization and total intensity:  $\beta(P) - \beta(I) = 0.08 \pm 0.02$  as in PIP XXII.
    - Some evidence that the dust spectral index may vary more for polarized emission than total intensity.
    - Good match between indices derived from colour ratios and multifrequency SED fitting.

## Multiple dust components along different line of sights





To characterize the spectral decorrelation of dust B-modes over the multipole bin 50-160, we only consider the four lowest *Planck* HFI frequency channels (100 – 353 GHz)

Amplitude of cross-spectra between HFI frequencies  $\,\nu_1$  and  $\,\nu_2$  :

$$\mathcal{D}_{\ell}(\nu_1 \times \nu_2) = A_{\rm d} \left(\frac{\nu_1 \nu_2}{353^2}\right)^{\beta_{\rm d}-2} \frac{B_{\nu_1}(T_{\rm d})}{B_{353}(T_{\rm d})} \frac{B_{\nu_2}(T_{\rm d})}{B_{353}(T_{\rm d})} R_{\ell}(\delta_{\rm d},\nu_1,\nu_2)$$

where

$$R_{\ell}(\delta_{\rm d},\nu_1,\nu_2) = \exp\left[-\delta_{\rm d}\,\ln\left(\frac{\nu_1}{\nu_2}\right)^2\right]$$

 $T_{\rm d} = 19.6\,{\rm K}$ 

Three model parameters:

- > The dust amplitude  $A_{\rm d}$ .
- > The dust spectral index  $\beta_d$ .
- > The dust decorrelation parameter  $\delta_d$ .

Assumes a frequency dependence model of spectral decorrelation based on *Vansyngel et al. 2017*.





- ▶ results of HFI-only (100 353 GHz) multi-frequency fit over the multipole range 50 160.
- > The mean of spectral correlation ratio is consistent with one within 1 sigma error-bars.





- results of dust correlation ratio derived from 217 and 353 GHz bands over the multipole range 50 - 160.
- The mean of dust spectral correlation ratio is less than one (instrumental systematics, CMB lensing B-mode signal).





- $\succ$  results of HFI-only (100 353 GHz) multi-frequency fit over the multipole range 50 160.
- > The mean of spectral correlation ratio is consistent with one within 1 sigma error-bars.





Multifrequency approach provides a tighter constraint on spectral decorrelation of dust Bmodes.



|                           | LR33          | LR42          | LR52          | LR62         | LR71          |
|---------------------------|---------------|---------------|---------------|--------------|---------------|
| Lower limits<br>(95% C.L) | 0.927         | 0.963         | 0.974         | 0.983        | 0.992         |
| E2E<br>simulations        | 0.991 ± 0.031 | 0.994 ± 0.017 | 0.993 ± 0.010 | 0.995 ±0.007 | 0.998 ± 0.004 |
| FFP10 model               | 0.992         | 0.994         | 0.996         | 0.997        | 0.998         |

#### Illustration of fit results for the Planck data







- We use multicomponent analysis to measure polarized foregrounds SED as a function of sky regions and multipoles.
- From the SED fitting analysis, we find  $\beta_d^{EE} = 1.517 \pm 0.004 (\text{stat.}) \pm 0.01 (\text{syst.})$  and  $\beta_d^{BB} = 1.538 \pm 0.004 (\text{stat.}) \pm 0.01 (\text{syst.})$
- From the colour ratio of 217x353 and 353x353 spectra, we find the mean polarized dust spectral index  $\beta_d^{EE,BB} = 1.56 \pm 0.01 (\text{stat.}) \pm 0.02 (\text{syst.}).$
- > The dust-synchrotron correlation dominates at low ells.
- > There is a small difference between spectral index of polarization and total intensity  $\Delta\beta_{\rm d} = 0.08 \pm 0.01$  as in PIPXXII.
- > We find no evidence for a loss of correlation in the Planck data.
- ➢ We provide lower limits to the correlation ratio that are tighter than values derived from the correlation ratio of 217 and 353 GHz alone.

#### The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

