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Frequency Dependence of Dust Emission

1 What dust properties are likely to vary from sightline to
sightline?

2 How do these properties affect the dust SED?

3 SED variations→ frequency decorrelation
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Simple Parametric Model

Dust heated to temperature Td emits as a modified blackbody

Idust
ν = A

(
ν

ν0

)β
Bν (Td)

A = How much dust?
Td = How hot is the dust?
β = What is the dust made of?
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Key Questions

• Are modified blackbody parameterizations robust enough
for realistic dust complexity?

• What dust complexities are most difficult for analysis and
how can they be best mitigated?
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Single Pixel Paradigm

1 Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs
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The Microwave Sky in Intensity and Polarization
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Emission Components

Synchrotron

Iν = A
(
ν

ν0

)β
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Single Pixel Paradigm

1 Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs

2 Employ a suite of dust models encompassing a range of
dust physics
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A Suite of Dust Models
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Single Pixel Paradigm

1 Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs

2 Employ a suite of dust models encompassing a range of
dust physics

3 Employ a suite of mock instruments measuring in seven
log-spaced frequency bins

νmin = {20,30,40}GHz

νmax = {300,400,500,600,700,800}GHz
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Single Pixel Paradigm

1 Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs

2 Employ a suite of dust models encompassing a range of
dust physics

3 Employ a suite of mock instruments measuring in seven
log-spaced frequency bins

4 Add noise based on forecasts for next-generation CMB
experiments (100 realizations)

5 Perform component separation
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Fitting Functions

One component MBB

Idust
ν = A

(
ν

ν0

)β
Bν (Td)

Two component MBB

Idust
ν = A1

(
ν

ν0

)β1

Bν
(
Td ,1

)
+ A2

(
ν

ν0

)β2

Bν
(
Td ,2

)
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Component Separation

Input: 14 data points (Q and U in seven frequencies)
1 Fit with MBB dust

2 Fit with 2MBB dust
Perform MCMC fit for each band configuration (18), dust input
model (7), dust fit model (2), and noise realization (100)
(that’s over 25,000 MCMCs)
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Magnetic Dust

• Interstellar grains found by Stardust and Cassini were
amorphous silicate with iron inclusions

• Ferromagnetic iron can be emissive in the microwave due
to magnetic effects (Draine & Hensley 2012, 2013)

• Polarized emission from magnetic iron is orthogonal to
polarized emission from non-magnetic grains, resulting in a
unique polarization signature
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A Suite of Dust Models
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Fit Results
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Best Fit Model
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Cloud Model

Tassis & Pavlidou 2015
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Frequency Decorrelation

• Even if you know what the dust is doing at one frequency,
hard to extrapolate to other frequencies due to the
non-trivial way polarizations sum

• Big threat to template-based component separation
techniques

• We know the dust SED varies across the sky– reasonable
to think it also varies along the line of sight
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Fit Results
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CMB Polarization Angle
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Summary

1 Line of sight effects (decorrelation!) and iron grains are the
most pernicious complexities for biasing the fit CMB

2 High frequencies can be critical for identifying model
failures
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