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Introduction
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Frequency Dependence of Dust Emission

© What dust properties are likely to vary from sightline to
sightline?

® How do these properties affect the dust SED?

® SED variations — frequency decorrelation



Dust Polarization
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Simple Parametric Model

Dust heated to temperature T4 emits as a modified blackbody
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A = How much dust?
T4 = How hot is the dust?
B = What is the dust made of?



Dust Polarization
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Key Questions

¢ Are modified blackbody parameterizations robust enough
for realistic dust complexity?

e What dust complexities are most difficult for analysis and
how can they be best mitigated?



Single Pixel Setup
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Single Pixel Paradigm

© Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs



Single Pixel Setup
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The Microwave Sky in Intensity and Polarization
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Single Pixel Setup
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Emission Components

Synchrotron



Single Pixel Setup
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Single Pixel Paradigm

© Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs

® Employ a suite of dust models encompassing a range of
dust physics



Single Pixel Setup
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A Suite of Dust Models
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Single Pixel Setup
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Single Pixel Paradigm

© Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs

® Employ a suite of dust models encompassing a range of
dust physics

©® Employ a suite of mock instruments measuring in seven
log-spaced frequency bins

Vinin = {20, 30,40} GHz
Vmax = {300, 400,500, 600, 700, 800} GHz



Single Pixel Setup
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Single Pixel Paradigm

© Work with one realization of all non-dust components in the
microwave sky, set to representative amplitudes and SEDs

® Employ a suite of dust models encompassing a range of
dust physics

©® Employ a suite of mock instruments measuring in seven
log-spaced frequency bins

@ Add noise based on forecasts for next-generation CMB
experiments (100 realizations)

@ Perform component separation
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Fitting Functions

One component MBB
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Single Pixel Setup
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Component Separation

Input: 14 data points (Q and U in seven frequencies)
© Fit with MBB dust

@ Fit with 2MBB dust

Perform MCMC fit for each band configuration (18), dust input
model (7), dust fit model (2), and noise realization (100)
(that’'s over 25,000 MCMCs)



Magnetic Dust

e Interstellar grains found by Stardust and Cassini were
amorphous silicate with iron inclusions

e Ferromagnetic iron can be emissive in the microwave due
to magnetic effects (Draine & Hensley 2012, 2013)

¢ Polarized emission from magnetic iron is orthogonal to
polarized emission from non-magnetic grains, resulting in a
unique polarization signature



A Suite of Dust Models
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Fit Results
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Best Fit Model
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Cloud Model
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Tassis & Pavlidou 2015



Frequency Decorrelation

e Even if you know what the dust is doing at one frequency,
hard to extrapolate to other frequencies due to the
non-trivial way polarizations sum

¢ Big threat to template-based component separation
techniques

¢ We know the dust SED varies across the sky— reasonable
to think it also varies along the line of sight



Fit Results
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Summary

© Line of sight effects (decorrelation!) and iron grains are the
most pernicious complexities for biasing the fit CMB

® High frequencies can be critical for identifying model
failures
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