

The University of Manchester

A new model of the microwave polarized sky for CMB experiments

Carlos Hervías-Caimapo

Anna Bonaldi Michael L. Brown

Jodrell Bank Centre for Astrophysics, University of Manchester

CMB foregrounds workshop, UCSD, San Diego

Total sky model in polarization MNRAS, 462, 2063 (2016)

Our model includes:

- Thermal dust
- Synchrotron
- Anomalous Microwave Emission (AME)
- White noise realization
- CMB realization

Templates are from 2015 Planck data release (Planck collaboration 2016 X)

Anomalous Microwave Emission template

Template constructed using thermal dust pol angles and AME T template with $f_{pol}=0.01$

Small scale features creation

- We extrapolate the angular power spectrum to higher multipoles, with a power-law fit.
- Then, create a map and weight it with a "Galactic mask", the intensity of the template
- Dust and AME features are created with the same random seed.

Spectral Energy Distributions

We consider standard and more complicated SEDs

Synchrotron $\frac{T_{A,syn}(\nu) \propto \nu^{-\beta_{syn}}}{T_{A,syn}(\nu) \propto (\nu/\nu_0)^{-\beta_{syn}+C\log(\nu/\nu_{piv})}}$

Dust
$$T_{A,dust}(\nu) \propto \nu^{\beta_{dust}+1} [\exp(h\nu/kT_d) - 1]^{-1}$$

 $T_{A,dust}(\nu) \propto \sum_{i=1}^{N_{mbb}} E_{dust,i} \nu^{\beta_{dust,i}+1} [\exp(h\nu/kT_{d,i}) - 1]^{-1}$

AME (from Bonaldi+07)

$$\log(T_{A,\nu}) = \text{const.} - \left[\frac{m_{60}\log(\nu_{\text{max}})}{\log(\nu_{\text{max}}/60\,\text{GHz})} + 2\right]\log(\nu) + \frac{m_{60}}{2\log(\nu_{\text{max}}/60\text{GHz})}(\log(\nu))^2,$$

β_{dust} map from Planck+16

 β_{syn} map from Giardino+02

Comparison of maps: Planck and WMAP bands

Model vs. Observations: Pixels within |b| <= 20 deg

Model vs. Observations: Q maps

Comparison of C_l: Planck and WMAP bands

WMAP

L79 180 181 182 183 178 179 180 181 18 G. Longitude

Study for COrE proposal MNRAS 468, 4408 (2017)

Using the sky model, we produce a **forecast study for** *r*, for example future experiment.

Summary

- Sky model in polarization. Includes foregrounds:
 - Thermal dust
 - Synchrotron
 - AME
- Creation of random small-scale features for all foregrounds. The specifics can be controlled for Monte Carlo purposes.
- The model is a good match with the observed polarized sky.
- In a follow-up work, the model is used to simulate observations and forecast performance on *r*.