The extended Global Sky Model (eGSM)

Adrian Liu, UC Berkeley/McGill

The extended Global Sky Model (eGSM) project

AL, UC Berkeley/McGill **Doyeon "Avery" Kim, UC Berkeley**Eric Switzer, NASA Goddard

Haoxuan "Jeff" Zheng, MIT/Intel

What does the sky look like in all directions at "all" frequencies?

My motivation

Cosmic Microwave Background

21cm Cosmology

(See **AL**,et al. 2013 PRD 87, 043002 for more details)

How does one model the sky?

Global Sky Model v1

(de Oliveira-Costa et al. 2008, MNRAS 388, 247)

Take a wide selection of survey data...

...identify common regions...

...which are then used to train three principal component spectral templates...

$$T(\hat{r}, \nu) = m_1(\hat{r})c_1(\nu) + m_2(\hat{r})c_2(\nu) + \dots$$

Given these

$$T(\hat{r}, \nu) = m_1(\hat{r})c_1(\nu) + m_2(\hat{r})c_2(\nu) + \dots$$

Solve for these

...and are interpolated to produces maps of the sky at "any" frequency

Global Sky Model v2

(Zheng... Kim, AL... et al. 2017, MNRAS 464, 3486)

Take an even wider selection of updated maps...

...now using six spectral components...

Given these

$$T(\hat{r}, \nu) = m_1(\hat{r})c_1(\nu) + m_2(\hat{r})c_2(\nu) + \dots$$

Solve for these

Solve for these

$$T(\hat{r}, \nu) = m_1(\hat{r})c_1(\nu) + m_2(\hat{r})c_2(\nu) + \dots$$

Given these

Given these

$$T(\hat{r}, \nu) = m_1(\hat{r})c_1(\nu) + m_2(\hat{r})c_2(\nu) + \dots$$

Solve for these

...to derive even even better fits to the data.

Global Sky Model v3

(Kim, AL, Switzer 2017, in prep.)

Why three components? Why six components?

Too few components: inadequate fits to data

Too many components: overfitting of data

Computing the Bayesian Evidence provides a way to determine the optimal number of principal components to fit

Computing the Bayesian Evidence provides a way to determine the optimal number of principal components to fit

2

But why even commit to a model? Use evidence as a weight for constructing hybrid models that are noncommittal to the number of components

Effective number of principal components

2

The old versions of the GSM had no error bars!

 Where available, use provided estimates of errors and covariances

LWA 74 MHz, Dowell et al. (2017)

- Where available, use provided estimates of errors and covariances
- Errors in the model itself modelled empirically

Run model again with an input map removed, making a prediction for the missing map

Subtract the new predicted map from the observed data

"Error"

Ansatz for errors in image space: proportional to error map

Ansatz for harmonic space: determined by C_I of whitened error map

Error model

An example 408 MHz prediction

0.0537907 4.42209

Errors on the 408 MHz prediction

0.000293996 1.90445

- Where available, use provided estimates of errors and covariances
- Errors in the model itself modelled empirically
- Interpolation errors accounted for using Gaussian Process regression.

Lots more coming soon to a Github repo near you!

- Position-dependent number of components.
- Error bars in output maps.
- Framework for incorporating monopole measurements.
- Inclusion of new map data.

Lots more coming soon to a Github repo near you!

- Position-dependent number of components.
- End goal: a publicly hosted,
- self-updating, best-guess model of the sky