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● Primordial CMB B-mode
● Sunyaev-Zeldovich effect
● Optimization (another time)?

Outline



  

CMB B-mode vs foregrounds
Remazeilles, Banday, Baccigalupi, et al, 

for the CORE collaboration – JCAP 2017 accepted

Polarization less complex than intensity (fewer components) but more challenging: 

→ larger dynamic range between CMB and foregrounds!

→ a slight mis-modelling of foregrounds can have a dramatic impact on the CMB B-mode

Foregrounds cannot be avoided just by limiting the frequency range of observations:
  

→ At 300 GHz the synchrotron has same amplitude and color than the CMB B-mode r=10-2 !

→ Broad frequency range is essential to fight against spectral degeneracies



  

Component separation algorithms

COMMANDER – Eriksen et al 2004, 2008 ; Remazeilles et al 2016, 2017

Bayesian parametric fitting in pixel space through MCMC Gibbs sampling

SMICA – Delabrouille et al 2003 ; Cardoso et al 2008

Blind power spectrum fitting in harmonic space

NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Minimum-variance internal linear combination in wavelet space

X-FORECAST – Errard et al 2016 ; Stompor et al 2016

Parametric fitting of foreground mixing matrix plus linear combination

The first three techniques have been successfully employed on Planck data!
– Planck 2015 results. IX., A&A 2016

Those four techniques have been tested on CORE simulations for CMB B-mode forecasts
– Remazeilles et al, for the CORE collaboration, JCAP 2017



  

Accepted by JCAP (2017)

→ Not selected by ESA, but we have
     cleared the path on the B-mode 
     challenges!

→ Ten papers (JCAP special issue)

CORE



  

Reconstruction of the primordial B-mode 
with CORE

10σ detection
after foreground
cleaning

Remazeilles, Banday, Baccigalupi, et al, for the CORE collaboration, 2017

r = 5 x 10-3, without lensing

10σ detection after foreground cleaning

Foregrounds: thermal dust MBB, synchrotron power-law, AME 1% polarized,
                      with variable spectral indices/temperatures over the sky



  

Reconstruction of the primordial B-mode 
with CORE

r = 5 x 10-3, with lensing

10σ detection
after foreground
cleaning

4σ detection after foreground cleaning 
and 60% delensing

Remazeilles, Banday, Baccigalupi, et al, for the CORE collaboration, 2017

Foregrounds: thermal dust MBB, synchrotron power-law, AME 1% polarized,
                      with variable spectral indices/temperatures over the sky



  

Reconstruction of the primordial B-mode 
with CORE

10σ detection
after foreground
cleaning

Remazeilles, Banday, Baccigalupi, et al, for the CORE collaboration, 2017

r = 1 x 10-3, without lensing

Foregrounds: thermal dust MBB, synchrotron power-law, AME 1% polarized,
                      with variable spectral indices/temperatures over the sky

3σ bias after foreground cleaning

foreground leakage!



  

Probe mission study: PICO
21 frequency bands between 21 – 800 GHz

Overall sensitivity of ~ 1 µK.arcmin



  

PICO PSM simulation: Stokes Q maps

r=10-3, τ=0.06

Tdβd

Lensed CMB

Thermal dust, 353 GHz Dust temperatureDust spectral index

Synchrotron, 23 GHz Synchrotron spectral index

βs

smoothed to 1°
for illustration purposes

Based on the Planck Sky Model (PSM) – Delabrouille et al 2013

Synchrotron curvature

uniform Cs= 0.3



  

Methodology Eriksen et al 2004, 2008
Remazeilles et al 2016, 2017

1. Separation of components  (COMMANDER fitting + Gibbs sampling):

Amplitudes (CMB, foregrounds)

Power spectra (CMB)

Spectral indices (foregrounds)

2. Likelihood estimation of r and A lens:

3. Blackwell-Rao posterior: 



  

Results for 3D foregrounds (r = 10-3 + lensing) 

r = (0.3 ± 0.4) x 10-3

τ = 0.0598 ± 0.0021

d, Td, s, Cl EE, Cl BB locally fitted

E-mode B-mode

M. Remazeilles

(No synchrotron curvature)



  

Results for 4D foregrounds (r = 10-3 + lensing) 

r = (0.3 ± 0.4) x 10-3τ = 0.0600 ± 0.0022

d, Td, s, Cl EE, Cl BB locally fitted, Cs globally fitted

E-mode B-mode

M. Remazeilles



  

PICO without 21, 25, 665, 800 GHz 

r = (0.8 ± 0.6) x 10-3

d, Td, s, Cl EE, Cl BB locally fitted, Cs globally fitted

E-mode B-mode

M. Remazeilles



  

PICO 43 – 462 GHz  

r = (1.3 ± 0.7) x 10-3

d, Td, s, Cl EE, Cl BB locally fitted, Cs globally fitted

E-mode B-mode

M. Remazeilles



  

Results for 4D foregrounds
Full PICO

β
synch

β
dust

T
dust

M. Remazeilles



  

Results for 4D foregrounds
PICO without 21, 25, 665, 800 GHz 

β
synch

β
dust

T
dust

M. Remazeilles



  

Results for 4D foregrounds (Cs global)
43 – 462 GHz 

β
synch

β
dust

T
dust

M. Remazeilles



  

Results for 4D foregrounds (Cs global)
43 – 462 GHz 

β
synch

β
dust

T
dust

M. Remazeilles

Lack of frequency range / high frequencies

Lack of precision/constraint on T
dust

Bias on CMB B-mode by extrapolation
toward CMB frequencies



  

Subtle issues on B-modes 



  

#1. Impact on r of foreground mismodelling

Remazeilles et al, MNRAS 2016

Impact of mismodelling 2 MBB dust components as a single MBB component:

● How many dust components in the sky? But do we really care?

● Most important, what is the actual dust spectrum in the 70 – 140 GHz frequency range?

● Any extrapolation is obsolete because of decorrelation effects 



  

#2. Lack of frequency range / sensitivity to βs,Td
Error Δβ

synch
 ~ 0.02  ⇒  error Δr ~ 10-3  when extrapolated from 23 to 145 GHz !

B-mode excess power

Same mean
and standard 

deviation,
but different 
skewness!

β
synch

β
dust

T
dust

Remazeilles et al, for the CORE collaboration, JCAP 2017 
Hervías-Caimapo et al, MNRAS 2017



  

#3. Averaging effects of spectral indices 
within pixels / beams

Many values β
dust

 per pixel

Map pixelization

● Averaging / pixelization creates spurious curvatures on the foreground SED !

● The assumed SED might differ from the effective SED in the maps!

→ source of bias on r = 10-3 for parametric / template fitting methods

→ similar to decorrelation effects, but not physical
 
,                                                                                    

 Chluba, Hill, Abitbol, 2017                            Remazeilles et al 2017, for the CORE collaboration 

(effective SED: ∑
i
 ν βi  ≠ ν β )

One value β
dust

 per line-of-sight

Dust spectral indices in the sky

See J. Chluba's talk



  

(a) Total fit = synchrotron 
  + CMB B-mode

(b) Total fit = curved synchrotron 
                  + nothing (r = 0) !

(a) (b)

#4. Frequency range & spectral degeneracies
● A bias on r may result from a lack of frequency bands

● A bias on r may result from a limited frequency range

Spectral degeneracy between CMB and synchrotron!

→ Same goodness-of-fit and no chi-square evidence for incorrect modelling!
→ Accurate fit of the total sky emission does not mean correct CMB fit!

synch.

frequencies

CMB

x

x

frequencies

synch.

x

x

frequencies

Flattened synchrotron 
(e.g. different populations of electrons)

CMB



  

#5. What about magnetic dust (MD)?

● Diffuse MD not yet observed!

● Theoretically, MD is highly polarized ~35% 

● MD shows spectral degeneracy with the CMB around 100 GHz!

→ can be a killer for component separation

Ferromagnetic lattice with spins aligned.

Thermal fluctuations will move them away, 
producing magnetic dipole radiation 

Draine & Hensley 2013

See B. Hensley's talk



  

#6. Extragalactic compact foregrounds
Polarized radio and IR compact sources at ~100 GHz dominate
the primordial CMB B-mode at r = 10-3 on large angular scales ℓ  50 !≳

Curto et al 2013

● Detect compact sources in intensity (easier), mask the relevant ones in polarization?

● “Inpainting” of sources in frequency maps prior to component separation?

See G. de Zotti's talk



  

Sunyaev-Zeldovich effect 



  Needlets (wavelets) allow to adjust the component separation to the local 
conditions of contamination both over the sky and over the angular scales

Needlets = bandpass filters 
on angular scales

NILC : an ILC on wavelets

NILC is blind:
no assumption 
on foregrounds



  

NILC reconstruction of SZ y-map with PICO

Full-sky PICO NILC y-map available at: 

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_TSZ_NILC_fsky66_res3acm.fits

M. Remazeilles

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_TSZ_NILC_fsky66_res3acm.fits


  

NILC SZ power spectrum with PICO

M. Remazeilles

Planck y-map

PICO y-map

Input y-map

Galactic

CIB

Noise extragalactic 
sources

CMB



  

TSZ-free CMB map reconstruction with PICO
Standard NILC Constrained NILC (SZ-free) Difference

“Constrained NILC” – Remazeilles, Delabrouille, Cardoso, 2011

Useful for different scientific objectives:
● Kinetic SZ – Planck Collaboration Int. XIII, 2014 ; Planck Collaboration Int. LIII, 2017
● CMB-LSS cross-correlations – Chen, Remazeilles, Dickinson, in prep.
● CMB spectral distortions – Remazeilles & Chluba, in prep.

Coma cluster

M. Remazeilles



  

PICO TSZ-free CMB map

Available at: 

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_CMB_Constrained_NILC_fsky66_
res3acm.fits

M. Remazeilles

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_CMB_Constrained_NILC_fsky66_res3acm.fits
http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_CMB_Constrained_NILC_fsky66_res3acm.fits
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