B-mode foregrounds removal

Mathieu Remazeilles

The University of Manchester

CMB Foregrounds Workshop – UCSD San Diego, USA, 29 Nov – 1 Dec 2017

Outline

- Primordial CMB B-mode
- Sunyaev-Zeldovich effect
- Optimization (another time)?

CMB B-mode vs foregrounds

Polarization less complex than intensity (fewer components) but more challenging:

- \rightarrow larger dynamic range between CMB and foregrounds!
- \rightarrow a slight mis-modelling of foregrounds can have a dramatic impact on the CMB B-mode

Foregrounds cannot be avoided just by limiting the frequency range of observations:

- \rightarrow At 300 GHz the synchrotron has same amplitude and color than the CMB B-mode r=10⁻² !
- \rightarrow Broad frequency range is essential to fight against spectral degeneracies

Component separation algorithms

• COMMANDER – Eriksen et al 2004, 2008 ; Remazeilles et al 2016, 2017

Bayesian parametric fitting in pixel space through MCMC Gibbs sampling

• SMICA – Delabrouille et al 2003 ; Cardoso et al 2008

Blind power spectrum fitting in harmonic space

• NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Minimum-variance internal linear combination in wavelet space

• X-FORECAST – Errard et al 2016 ; Stompor et al 2016

Parametric fitting of foreground mixing matrix plus linear combination

The first three techniques have been successfully employed on Planck data! — Planck 2015 results. IX., A&A 2016

Those four techniques have been tested on CORE simulations for CMB B-mode forecasts – Remazeilles et al, for the CORE collaboration, JCAP 2017

CORE

- → Not selected by ESA, but we have cleared the path on the B-mode challenges!
- \rightarrow Ten papers (JCAP special issue)
- Mission: Delabrouille, de Bernardis, Bouchet et al.
- Instrument: de Bernardis, Ade, Baselmans et al.
- Inflation: Finelli, Bucher, Achucarro et al.
- Lensing: Challinor, Allison, Carron, et al.
- Parameters: Di Valentino, Brinckmann, Gerbino et al.
- Clusters: Melin, Bonaldi, Remazeilles et al.
- Velocity: Burigana, Carvalho, Trombetti et al.
- Sources: De Zotti, Gonzalez-Nuevo, Lopez-Caniego et al.
- Foregrounds: Remazeilles, Banday, Baccigalupi et al.
- Systematics: Natoli, Ashdown, Banerji et al.

arXiv:1704.04501v2 [astro-ph.CO] 19 Jun 2017

Exploring Cosmic Origins with CORE: *B*-mode Component Separation

M. Remazeilles,¹ A. J. Banday,^{2,3} C. Baccigalupi,^{4,5} S. Basak,^{6,4} A. Bonaldi,¹ G. De Zotti,⁷ J. Delabrouille,⁸ C. Dickinson,¹ H. K. Eriksen,⁹ J. Errard,¹⁰ R. Fernandez-Cobos,¹¹ U. Fuskeland,⁹ C. Hervías-Caimapo,¹ M. López-Caniego,¹² E. Martinez-González,¹¹ M. Roman,¹³ P. Vielva,¹¹ I. Wehus,⁹ A. Achucarro,^{14,15} P. Ade,¹⁶ R. Allison,¹⁷ M. Ashdown,^{18,19} M. Ballardini,^{20,21,22} R. Banerji,⁸ N. Bartolo,^{23,24,7} J. Bartlett,⁸ D. Baumann,²⁵ M. Bersanelli,^{26,27} M. Bonato,^{28,4} J. Borrill,²⁹ F. Bouchet,³⁰ F. Boulanger,³¹ T. Brinckmann,³² M. Bucher,⁸ C. Burigana,^{21,33,22} A. Buzzelli,^{34,35,36} Z.-Y. Cai,³⁷ M. Calvo,³⁸ C.-S. Carvalho,³⁹ G. Castellano,⁴⁰ A. Challinor,²⁵ J. Chluba,¹ S. Clesse,³² I. Colantoni,⁴⁰ A. Coppolecchia,^{34,41} M. Crook,⁴² G. D'Alessandro, 34,41 P. de Bernardis, 34,41 G. de Gasperis, 34,36 J.-M. Diego,¹¹ E. Di Valentino,^{30,43} S. Feeney,^{18,44} S. Ferraro,⁴⁵ F. Finelli,^{21,22} F. Forastieri,⁴⁶ S. Galli,³⁰ R. Genova-Santos,^{47,48} M. Gerbino,^{49,50} J. González-Nuevo,⁵¹ S. Grandis,^{52,53} J. Greenslade,¹⁸ S. Hagstotz,^{52,53} S. Hanany,⁵⁴ W. Handley,^{18,19} C. Hernandez-Monteagudo,⁵⁵ M. Hills,⁴² E. Hivon,³⁰ K. Kiiveri,^{56,57} T. Kisner,²⁹ T. Kitching,⁵⁸ M. Kunz,⁵⁹ H. Kurki-Suonio,^{56,57} L. Lamagna,^{34,41} A. Lasenby,^{18,19} M. Lattanzi,⁴⁶ J. Lesgourgues,³² A. Lewis,⁶⁰ M. Liguori,^{23,24,7} V. Lindholm,^{56,57} G. Luzzi,³⁴ B. Maffei,³¹ C.J.A.P. Martins,⁶¹ S. Masi,^{34,41} D. McCarthy,⁶² J.-B. Melin,⁶³ A. Melchiorri,^{34,41} D. Molinari,^{33,46,21} A. Monfardini,³⁸ P. Natoli,^{33,46} M. Negrello,¹⁶ A. Notari,⁶⁴ A. Paiella,^{34,41} D. Paoletti,²¹ G. Patanchon,⁸ M. Piat,⁸ G. Pisano,¹⁶ L. Polastri,^{33,45} G. Polenta,^{65,66} A. Pollo,⁶⁷ V. Poulin,^{32,68} M. Quartin,^{69,70} J.-A. Rubino-Martin,^{47,48} L. Salvati,^{34,41} A. Tartari,⁸ M. Tomasi,²⁶ D. Tramonte,⁴⁷ N. Trappe,⁶² T. Trombetti,^{21,33,22} C. Tucker,¹⁶ J. Valiviita,^{56,57} R. Van de Weijgaert,^{71,72} B. van Tent,⁷³ V. Vennin,⁷⁴ N. Vittorio,^{35,36} K. Young,⁵⁴ and M. Zannoni,^{75,76} for the CORE collaboration.

Accepted by JCAP (2017)

Reconstruction of the primordial B-mode with CORE

r = 5 x 10⁻³, without lensing

Remazeilles, Banday, Baccigalupi, et al, for the CORE collaboration, 2017

<u>Foregrounds</u>: thermal dust MBB, synchrotron power-law, AME 1% polarized, with variable spectral indices/temperatures over the sky

Reconstruction of the primordial B-mode with CORE

Remazeilles, Banday, Baccigalupi, et al, for the CORE collaboration, 2017

<u>Foregrounds</u>: thermal dust MBB, synchrotron power-law, AME 1% polarized, with variable spectral indices/temperatures over the sky

Reconstruction of the primordial B-mode with CORE

r = 1 x 10⁻³, without lensing

foreground leakage!

Remazeilles, Banday, Baccigalupi, et al, for the CORE collaboration, 2017

<u>Foregrounds</u>: thermal dust MBB, synchrotron power-law, AME 1% polarized, with variable spectral indices/temperatures over the sky

Probe mission study: PICO

• 21 frequency bands between 21 – 800 GHz

Overall sensitivity of ~ 1 μK.arcmin

CMBP						
del nu/nu	0,25		del center	1,2		
nul	1 30 GHz					
	nu	nu <u>low</u>	nu <u>high</u>	del nu	FWHM	PolWeight
Band#	(GHz)	(GHz)	(GHz)	(GHz)	(arcmin)	(uk*arcmin)
1	21	18,2	23,4	5,2	40,9	50
2	25	21,9	28,1	6,3	34,1	33
3	30	26,3	33,8	7,5	28,4	22,4
4	36,0	31,5	40,5	9,0	23,7	15
5	43,2	37,8	48,6	10,8	19,7	9,1
6	51,8	45,4	58,3	13,0	16,4	7
7	62,2	54,4	70,0	15,6	13,7	5
8	74,6	65,3	84,0	18,7	11,4	4
9	89,6	78,4	100,8	22,4	9,5	3,2
10	107,5	94,1	120,9	26,9	7,9	2,9
11	129,0	112,9	145,1	32,2	6,6	2,7
12	154,8	135,4	174,1	38,7	5,5	2,6
13	185,8	162,5	209,0	46,4	4,6	3,6
14	222,9	195,0	250,8	55,7	3,8	5,3
15	267,5	234,0	300,9	66,9	3,2	9
16	321,0	280,9	361,1	80,2	2,7	16,0
17	385,2	337,0	433,3	96,3	2,2	32
18	462,2	404,4	520,0	115,6	1,8	75
19	554,7	485,3	624,0	138,7	1,5	220,0
20	665,6	582,4	748,8	166,4	1,3	1100
21	798,7	698,9	898,5	199,7	1,1	10000,0

PICO PSM simulation: Stokes Q maps

Based on the Planck Sky Model (PSM) – *Delabrouille et al 2013*

Methodology

1. Separation of components (COMMANDER fitting + Gibbs sampling):

$$\begin{array}{lll} \boldsymbol{s}^{(i+1)} & \leftarrow & P\left(\boldsymbol{s} | C_{\ell}^{(i)}, \boldsymbol{\beta}^{(i)}, \boldsymbol{d}\right), \\ C_{\ell}^{(i+1)} & \leftarrow & P\left(C_{\ell} | \boldsymbol{s}^{(i+1)}\right), \\ \boldsymbol{\beta}^{(i+1)} & \leftarrow & P\left(\boldsymbol{\beta} | \boldsymbol{s}^{(i+1)}, \boldsymbol{d}\right), \end{array}$$

Amplitudes (CMB, foregrounds) Power spectra (CMB) Spectral indices (foregrounds)

2. Likelihood estimation of r and A lens:

$$-2\ln\mathcal{L}\left[\widehat{C}_{\ell}|C_{\ell}^{th}\left(r,A_{lens}\right)\right] = \sum_{\ell} (2\ell+1)\left[\ln\left(\frac{C_{\ell}^{th}}{\widehat{C}_{\ell}}\right) + \frac{C_{\ell}^{th}}{\widehat{C}_{\ell}} - 1\right]$$

$$C_{\ell}^{th} = r C_{\ell}^{tensor}(r=1) + A_{lens} C_{\ell}^{lensing}(r=0),$$

3. Blackwell-Rao posterior: $\mathcal{P}(r, A_{lens}) \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left[\widehat{C}_{\ell}^{i} | C_{\ell}^{th}(r, A_{lens})\right]$

Results for 3D foregrounds ($r = 10^{-3} + lensing$)

Results for 4D foregrounds ($r = 10^{-3} + lensing$)

 β_{d} , T_{d} , β_{s} , CI ^{EE}, CI ^{BB} locally fitted, C globally fitted

PICO without 21, 25, 665, 800 GHz

 β_{d} , T_{d} , β_{s} , CI ^{EE}, CI ^{BB} locally fitted, C_s globally fitted

PICO 43 – 462 GHz

 β_{d} , T_{d} , β_{s} , CI ^{EE}, CI ^{BB} locally fitted, C globally fitted

Results for 4D foregrounds Full PICO

Results for 4D foregrounds PICO without 21, 25, 665, 800 GHz

Results for 4D foregrounds (C_s global) 43 - 462 GHz

Results for 4D foregrounds (C_s global) 43 – 462 GHz

Subtle issues on B-modes

#1. Impact on r of foreground mismodelling

Remazeilles et al, MNRAS 2016

- How many dust components in the sky? But do we really care?
- Most important, what is the actual dust spectrum in the 70 140 GHz frequency range?
- Any extrapolation is obsolete because of decorrelation effects

#2. Lack of frequency range / sensitivity to β_s , T_d

#3. Averaging effects of spectral indices within pixels / beams

- Averaging / pixelization creates spurious curvatures on the foreground SED !
- The assumed SED might differ from the effective SED in the maps!
 - \rightarrow source of bias on r = 10⁻³ for parametric / template fitting methods
 - \rightarrow similar to decorrelation effects, but not physical

Chluba, Hill, Abitbol, 2017

Remazeilles et al 2017, for the CORE collaboration

See J. Chluba's talk

#4. Frequency range & spectral degeneracies

• A bias on r may result from a lack of frequency bands

→ Same goodness-of-fit and no chi-square evidence for incorrect modelling!
→ Accurate fit of the total sky emission does not mean correct CMB fit!

• A bias on r may result from a limited frequency range

#5. What about magnetic dust (MD)?

- Diffuse MD not yet observed!
- Theoretically, MD is <u>highly polarized</u> ~35%
- MD shows <u>spectral degeneracy with the CMB</u> around 100 GHz!

 \rightarrow can be a killer for component separation

See B. Hensley's talk

#6. Extragalactic compact foregrounds

Polarized radio and IR compact sources at ~100 GHz dominate the primordial CMB B-mode at $r = 10^{-3}$ on large angular scales $\ell \gtrsim 50$!

- Detect compact sources in intensity (easier), mask the relevant ones in polarization?
- "Inpainting" of sources in frequency maps prior to component separation?

See G. de Zotti's talk

Sunyaev-Zeldovich effect

NILC : an ILC on wavelets

Needlets (wavelets) allow to adjust the component separation to the local conditions of contamination both over the sky and over the angular scales

NILC reconstruction of SZ y-map with PICO

Input TSZ map @ 3 arcmin

NILC PICO TSZ map @ 3 arcmin

Full-sky PICO NILC y-map available at:

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_TSZ_NILC_fsky66_res3acm.fits

NILC SZ power spectrum with PICO

TSZ-free CMB map reconstruction with PICO

Standard NILC

NILC PICO CMB @ 3 arcmin

Constrained NILC (SZ-free)

'onstrained NILC' PICO CMB @ 3 arcmi

Difference

NILC CMB - 'Constrained NILC' CMB

"Constrained NILC" - Remazeilles, Delabrouille, Cardoso, 2011

Useful for different scientific objectives:

- Kinetic SZ Planck Collaboration Int. XIII, 2014 ; Planck Collaboration Int. LIII, 2017
- CMB-LSS cross-correlations Chen, Remazeilles, Dickinson, in prep.
- CMB spectral distortions Remazeilles & Chluba, in prep.

PICO TSZ-free CMB map

'Constrained NILC' PICO CMB @ 3 arcmin

Available at:

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/CMB-Probe/NILC_Mathieu/PICO_CMB_Constrained_NILC_fsky66_ res3acm.fits