Galactic foregrounds for lensing: кк autospectrum & delensing

Alex van Engelen (CITA)

with

 DW Han (Stony Brook), Neelima Sehgal, Blake Sherwin, Colin Hill, Susan Clark

We measure this

Hu & Okamoto (2001)

We measure this

Hu & Okamoto (2001)

We measure this

Hu & Okamoto (2001)

We want this

We measure this

Separation of primordial CMB and mass map from Lensing analysis

We measure this

• Delensing ---> r, Neff

• Delensing --> r, Neff

• Delensing —> r, Neff

• Large-scale lensing —> $\sum m_{\nu}$, w, dm

• Delensing —> r, Neff

- Large-scale lensing —> $\sum m_{\nu}$, w, dm
- Small-scale lensing —> w, $\sum m_{\nu}$

- Delensing —> r, Neff
- Large-scale lensing —> $\sum m_{\nu}$, w, dm
- Small-scale lensing —> w, $\sum m_{\nu}$

• Cross-correlation between CMB lens and other data sets —> w, $\sum m_{\nu}$

- Lensing maps can come from:
 - CMB temperature $\kappa(TT)$
 - Polarization к(EB)
 - External tracers

- Lensing maps can come from:
 - CMB temperature $\kappa(TT)$ Today (Planck)
 - Polarization к(EB)
 - External tracers

- Future (S4 / PICO)
- Today (Planck CIB / Herschel CIB)

Lensing map noise

- Polarization lensing
 will dominate for
 PICO
- Temperature: extragalactic foregrounds
 - Polarization: galactic foregrounds

- кк autospectrum
- Delensing

$B_{templ} \sim E \bigstar \kappa(EB)$

Bias if $\langle B_{low}B_{templ} \rangle \sim \langle EBEB \rangle != 0$

кк autospectrum

• Delensing

Non-Gaussianity of dust polarization on small scales?

Targets

- кк autospectrum
- Delensing

Models for small-scale pol dust

- Extending large-scale pol directions to small scales
 - Planck FFP8 model
- Correlation between pol direction and filaments (HI maps)
 - Clark+ sims
- Turbulent magnetic field models
 - Vansyngel+ sims

Targets

кк autospectrum

Delensing

Models for small-scale pol dust

- Extending large-scale pol directions to small scales
 - Planck FFP8 model
- Correlation between pol direction and filaments (HI maps)
 - Clark+ sims

Turbulent magnetic field models

Vansyngel+ sims

$[T_{\mathrm{dust}}, Q_{\mathrm{dust}}, U_{\mathrm{dust}}]$

Vansyngel_mapTqu_00036

-0.00008000040000000040000800002000024

-0.00030.00020.00020.00010.000**1**0.000**0**5000000005

 $\kappa(E_{\rm dust}, B_{\rm dust})$

Vansyngel_kappaMap_00036

Bias to lensing autospectra from Vansyngel+ sims courtesy DW Han (Stony Brook)

Bias to lensing autospectra from Vansyngel+ sims courtesy DW Han (Stony Brook)

Targets

кк autospectrum

Delensing

Models for small-scale pol dust

Extending large-scale pol directions to small scales

- Planck FFP8 model
- Correlation between pol direction and filaments (HI maps)
 - Clark+ sims
- Turbulent magnetic field models
 - Vansyngel+ sims

Bias to lensing autospectra from Planck FFP8 sims

CORE lensing paper (Challinor, Allison++2017) arXiv:1707.02259

Targets

кк autospectrum

Delensing

Models for small-scale pol dust

- Extending large-scale pol directions to small scales
 - Planck FFP8 model
- Correlation between pol direction and filaments (HI maps)
 - Clark+ sims

Turbulent magnetic field models

Vansyngel+ sims

$[T_{\mathrm{dust}}, Q_{\mathrm{dust}}, U_{\mathrm{dust}}]$

Vansyngel_mapTqu_00036

-0.00008000040000000040000800002000024

-0.00030.00020.00020.00010.000**1**0.000**0**5000000005

 $\kappa(E_{\rm dust}, B_{\rm dust})$

Vansyngel_kappaMap_00036

 $\phi(E_{\rm dust}, B_{\rm dust})$

Vansyngel_phiMapFiltered_00036

$[T_{\text{dust}}, E_{\text{dust}}, B_{\text{dust}}]$ filtered

Vansyngel_inTebFiltered_00036

	1	1				
-15	0	15	30	45	60	75

1	1			1	1	1	
-8	-6	-4	-2	0	2	4	6

											_
-0	.10-0	.08-	0.06	- 0.04	⊢0.02	20.00	0.02	0.04	0.06	0.08	0.10

$[T_{dust}, Q_{dust}, U_{dust}]$ filtered

Vansyngel_inTquFiltered_00036

1	1	I		1	1	
-15	0	15	30	45	60	75

	1	1		1	-	1	1	
-4	-3	-2	-1	0	1	2	3	4

	1		1	1	1	
-3.0	-1.5	0.0	1.5	3.0	4.5	6.0

$\begin{bmatrix} T_{\text{dust}}, Q_{\text{dust}}, U_{\text{dust}} \end{bmatrix} \text{ filtered} \\ \text{lensed with } \phi(E_{\text{dust}}B_{\text{dust}}) \end{bmatrix}$

Vansyngel_delensedTqu_00036

	1	1			1	1
-15	0	15	30	45	60	75

1	1	1		1	-			
-4	-3	-2	-1	0	1	2	3	4

	1	1		1		
-3.0	-1.5	0.0	1.5	3.0	4.5	6.0

 $\langle B_{\rm dust} B_{\rm template} \rangle$

Clark sims: no bias seen (preliminary)

Takeaways

- Dust 4-point function is uncertain and might be important!
- For models analyzed so far (all at one frequency, scaled to 150 GHz):
 - $<\kappa(TT)\kappa(TT)>$ is biased from dust.
 - Polarization: CORE+ on PlanckFFP8 found bias that can be removed by down weighting (assumes uniform power over patches!)

Extra slides.....

Outline

CMB-S4 science book

Foregrounds in CMB temperature-based lensing

van Engelen, Bhattacharya, Sehgal, Holder, Zahn, Nagai 2014

- CIB/tSZ/kSZ/κ bi/trispectra are measurable and interesting
- Is bias-hardening feasible?
- Is spectral cleaning feasible? tSZ/CIB bispectrum/trispectrum residuals — comparable to kSZ?

To-do for TT lensing — test both spectral and spatial cleaning with full end-to-end simulation analysis

CITA peak-patch simulation Alvarez, Stein, Bond, Battaglia, van Engelen, Pham, +++

Outline

- P lensing will dominate
- T: extragalactic foregrounds
- P: galactic foregrounds

Lensing noise vs. instrumental noise

- Polarization lensing will dominate for PICO
- Temperature: extragalactic foregrounds
- Polarization: galactic foregrounds